

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Special Issue-11 pp. 503-508 Journal homepage: <u>http://www.ijcmas.com</u>



## **Original Research Article**

# Studies on Genetic Variability, Heritability and Genetic Advance in some Bread Wheat (*Triticum aestivum* L. em. Thell) Genotypes

Indra Prakash<sup>1</sup>, Tarkeshwar<sup>2</sup>\*, Ravi Prakash Chaudhary<sup>2</sup>, Soni Singh<sup>2</sup>, Ashish Srivastava<sup>3</sup> and S.C. Gaur<sup>1</sup>

<sup>1</sup>Department of Genetics and Plant Breeding, Baba Raghav Das P G College, Deoria (U.P.) – 274 001, India <sup>2</sup>Department of Genetics and Plant Breeding, <sup>3</sup>Department of Agricultural Economics, A.N.D.U.A.T., Kumarganj, Ayodhya (U.P.) – 224 229, India

#### \*Corresponding author

### ABSTRACT

#### Keywords

Bread wheat, GCV, PCV, Heritability, Genetic advance advance at agriculture research farm BRD Post Graduate College, Deoria (UP) during *rabi* 2017-18 in timely sown, irrigated and normal soil conditions. Total 81 genotypes with three checks were evaluated under Augmented Block Design. The variance due to blocks was highly significant for flag leaf area, days to maturity, spike length, peduncle length and grain yield per spike and number of spikelets per spike. The highest variance due to genotypes with highest variance due to phenotypes was observed for plant height followed by 1000 grain weight. Higher values of GCV were noticed for grain yield per spike, biological yield, plant height and spike length while higher values of PCV were also noticed for grain yield per spike, biological yield, plant height, days to maturity, peduncle length and spike length. High estimates of genetic advance in per cent over mean was found for 1000 grain weight and plant height. It indicates that these traits were governed by additive genetic effect which is fixable type and consequently desirable selection will reward for improvement for those traits.

An experiment was conducted to estimate the genetic variability, heritability and genetic

### Introduction

Wheat (*T. aestivum* L.) belongs to family *Graminae* (*Poaceae*) which is a large family and constitutes group of a large number of food crops. It is one of the most energy rich cereal crops of the world. It is a *rabi* season, self-pollinated hexapolyploidy cereal crop with a vast genetic divergence throughout the world. Wheat is grown under a wide range of agro-climatic zones as tropical and subtropical regions. It is also called as "King of Cereals" because of acreage it occupies,

high productivity and significant position in the world food grain trade. It is the second most important staple food crop for more than 35% of the world population. Breeders have focussed to develop improved varieties in relation to improve yield potential of wheat. In last three decades, India has achieved tremendous increase in area, production and productivity of wheat. Extreme and high adaptation of this crop accompanied by its consumption pattern in human nutrition, it become one of the most important cereal crop in the world next to rice. Genetic improvement in metric traits depends upon the nature and magnitude of variability present in the available genetic stock and extent to which the desirable traits heritable. To select superior genotypes in a breeding program, a good knowledge of parameters like variability, heritability and genetic advance is very much essential. Keeping this in view, the present study was carried out to reveal the genetic variability, heritability and genetic advance.

### Materials and Methods

The experimental materials were comprised of 81 genotypes collected from Department of Genetics and Plant Breeding, ANDUAT, Ayodhya, CSAUAT Kanpur, Institute of Agricultural Sciences, B.H.U. Varanasi, Uttar Pradesh. The experiment was evaluated at the Research Farm, Department of Genetics & Plant Breeding, BRDPG College, Deoria (UP). The experimental field under present investigation is located at 26.5° N latitude and  $83.79^{\circ}$  E longitude and 68 meter (223 feet) above the mean sea level. The climate of district Deoria is semi-arid with hot summer and cold winter. The experiment was conducted with 81 genotypes with 3 checks variety of wheat in Augmented Block Design during rabi 2017-18. Two rows of each test genotype was present only once in each block with 3 checks in randomized manner along with the distance of 23 cm between the rows 5 between the and cm plants. The agronomical recommended and crop protection practices were adopted to raise a good crop. Observation were recorded from five competitive randomly selected plants at maturity stage of the plants for thirteen quantitative traits viz., days to 50% flowering, days to maturity, number of effective tillers per plant, flag leaf area, plant height, spike length, number of spikelets per spike, peduncle length, biological yield per plant, grain yield per plant, grain yield per spike, number of grains per spike and 1000 grains weight were recorded to estimate genetic variability parameters. To measure Genetic variability, the observations were subjected to statistical analysis as : Analysis of variance, Heritability (Broad sense), Genetic advance and Genetic advance as per cent over mean; suggested by (1, 2, and 3) respectively.

### **Results and Discussions**

The analysis of variance for thirteen characters of 81 cultivars revealed high significant difference among the genotypes. The variance due to blocks was highly significant for flag leaf area, days to maturity, spike length, peduncle length and grain yield per spike and number of spikelets per spike. However, the variance due to checks was highly significant for characters plant height, spike length, and number of spikelets per spike and no. of effective tillers per plant and grains per spike. The variance due to error were highly significant for number of spikelets per spike, 1000 grains weight and grain yield per plant (Table-1).

The character days to maturity (115-133) showed highest range, while the minimum range was observed in case of grain yield per spike (0.70-3.30). The other parameters with high range of variation were days to 50% flowering (70.33-92.00), plant height (59.94-123.26).

The highest variance due to genotypes with highest variance due to phenotypes was observed for plant height followed by 1000 grain weight. Keeping this in mind a plant breeder can select these traits in his breeding program for this area to give farmers high yielding varieties.

Relatively higher values of GCV were noticed for grain yield per spike, biological yield, plant height and spike length while higher values of PCV were also noticed for grain yield per spike, biological yield, plant height and spike length. The low values of GCV and PCV were recorded for rest of the characters. Difference between GCV and PCV values for the mentioned characters was very broad indicating influence of the environment on the expression of the traits.

Heritability and genetic advance are important selection parameters. Heritability estimate along with genetic advance are normally more helpful in predicting the gain under selection than heritability estimates alone. High estimates of heritability (>75%) were observed for plant height, days to maturity, peduncle length, spike length and moderate heritability (50-75%) was recorded for no. of spikelets per spike, 1000 grain weight and flag leaf area indicating that a plant breeder can concentrate on these traits to exploit effective selection for genetic improvement. Remaining traits showed low heritability (<50%) (Table-2). High heritability accompanied with high genetic advance indicates that the heritability is due to additive genetic effect and selection may be effective, while high heritability coupled with low genetic advance indicates the predominance of non-additive gene action. High estimates of genetic advance in per cent over mean was found for 1000 grain weight and plant height; and the moderate genetic advance in per cent over mean were evaluated for no. of tillers per plant and flag leaf area. Rest of the characters showed low genetic advance in per cent over mean.

| S.  | Characters                         | Source of variance |            |           |  |  |  |
|-----|------------------------------------|--------------------|------------|-----------|--|--|--|
| No. |                                    | Blocks             | Checks     | Error     |  |  |  |
|     |                                    | df (8)             | df (2)     | df (16)   |  |  |  |
| 1   | Days to 50% flowering              | 158.833            | 60.666     | 137.339   |  |  |  |
| 2   | Flag leaf area (cm <sup>2</sup> )  | 660.121**          | 150.169    | 372.566   |  |  |  |
| 3   | Plant height (cm)                  | 35.28452           | 1263.595** | 4739.03   |  |  |  |
| 4   | Days to maturity                   | 136.50**           | 0.2222     | 23.107    |  |  |  |
| 5   | Spike length (cm)                  | 14.3063**          | 8.3247**   | 17.0976   |  |  |  |
| 6   | No. of spikelets per spike         | 23.9623*           | 9.8522**   | 51.1611** |  |  |  |
| 7   | No. of effective tillers per plant | 7.2406             | 0.5362*    | 4.9303    |  |  |  |
| 8   | Peduncle length (cm)               | 269.977**          | 174.8735   | 565.1425  |  |  |  |
| 9   | Grains per spike                   | 110.521            | 26.739*    | 350.859   |  |  |  |
| 10  | 1000 grain weight (g)              | 493.129            | 33.851     | 255.481*  |  |  |  |
| 11  | Biological yield per plant (g)     | 44.04168           | 0.320      | 140.825   |  |  |  |
| 12  | Grain yield per plant (g)          | 16.160             | 4.945      | 90.921*   |  |  |  |
| 13  | Grain yield per spike (g)          | 1.3229**           | 0.7674     | 3.2592    |  |  |  |

### Table.1 ANOVA for yield and attributing traits in 81 germplasm lines of Wheat

\*\*Significant at 5% Probability level, \*Significant at 1% Probability level

|                                   | Range |        |        | Var          | Variance         |        |        |                     |         |         |
|-----------------------------------|-------|--------|--------|--------------|------------------|--------|--------|---------------------|---------|---------|
| Characters                        | Min.  | Max.   | Mean   | $\sigma^2 g$ | σ <sup>2</sup> p | GCV    | PCV    | h <sup>2</sup> (BS) | GA (%)  | GAM     |
|                                   |       |        |        |              |                  | (%)    | (%)    | (%)                 |         |         |
| Days to 50% flowering             | 70.33 | 92.00  | 82.61  | 6.2960       | 14.8797          | 3.039  | 4.673  | 0.4231              | 3.3623  | 4.0728  |
| Flag leaf area (cm <sup>2</sup> ) | 15.77 | 51.31  | 31.97  | 9.9662       | 33.2517          | 9.866  | 5.9523 | 0.5830              | 2.3148  | 7.1488  |
| Plant height (cm)                 | 59.94 | 123.26 | 84.79  | 142.4613     | 438.650          | 13.849 | 18.021 | 0.2997              | 3.5603  | 11.1264 |
| Days to maturity                  | 115   | 133    | 125.25 | 8.6197       | 10.0639          | 2.342  | 2.530  | 0.8565              | 5.5973  | 4.4646  |
| Spike length (cm)                 | 6.77  | 13.73  | 10.20  | 0.3532       | 1.4219           | 5.858  | 11.752 | 0.2484              | 0.6103  | 6.0146  |
| No. of spikelets per spike        | 11.05 | 22.05  | 16.96  | -0.1177      | 3.0799           | -2.028 | 10.376 | -0.0382             | -0.1381 | -0.8167 |
| No. of effective tillers per      | 3.01  | 6.35   | 4.77   | 0.1150       | 0.4231           | 7.123  | 13.664 | 0.2717              | 0.3641  | 7.6481  |
| plant                             |       |        |        |              |                  |        |        |                     |         |         |
| Peduncle length (cm)              | 27.71 | 59.65  | 40.89  | 1.9669       | 37.2883          | 3.420  | 14.890 | 0.0527              | 0.6635  | 1.6180  |
| Grains per spike                  | 19.68 | 46.08  | 34.25  | -5.6193      | 16.3094          | -6.942 | 11.826 | -0.3445             | -2.8664 | -8.3939 |
| 1000grain weight (g)              | 11.07 | 56.70  | 33.56  | 37.2415      | 53.2091          | 18.301 | 21.875 | 0.6999              | 10.5172 | 31.5400 |
| Biological yield per plant        | 9.29  | 31.02  | 17.47  | 0.2951       | 9.0967           | 3.200  | 17.770 | 0.0324              | 0.2015  | 1.1874  |
| (g)                               |       |        |        |              |                  |        |        |                     |         |         |
| Grain yield per plant (g)         | 4.54  | 14.14  | 9.34   | -1.9212      | 3.7614           | -14.91 | 20.862 | -0.5108             | -2.0406 | -21.951 |
| Grain yield per spike (g)         | 0.7   | 3.30   | 2.00   | 0.0192       | 0.2229           | 6.951  | 23.693 | 0.0861              | 0.0837  | 4.2009  |

**Table.2** Estimate of Genetic variability, Heritability and Genetic Advance in 81 germplasm lines of Wheat

## References

- Bhushan, Bharat; Gaurav, S. S., Kumar, Ravindra; Pal, Rishi; Panday, Manoj; Kumar, Anant; Bharti, Sonu; Nagar, S. S. and Rahul, V.P. (2013). Genetic Variability, Heritability and Genetic Advance in Bread Wheat (*Triticum aestivum* L.). *Environment* & Ecology 31 (2): 405–407.
- Federer, W.T. (1956). Augmented Block Design-*The Planters Record* 40: 191-207.
- Gaur, S.C. (2016). Genetic studies on yield and associated characters in wheat (*T. aestivum* L.em. Thell). *International Journal of theoretical and applied science* 8(2): 36-39.
- Gaur, S.C., Sharma, S.K. and Gaur, L.B. (2014). Study of heritability and genetic advance with correlation response in F1 and F2 generations of bread wheat (*T. aestivum* L. em. Thell). *Progressive Research* 9 (Special 769-772).
- Gaur, S.C., Singh, P.N., Gaur, L.B., Singh,
  S.N. and Tiwari, L.P. (2014).
  Heritability and genetic advance in
  bread wheat (*Triticum aestivum* L.).
  Research Journal of agriculture sciences 5(3): 573-574.
- Gaur, Sateesh Chandra; Singh, S.P. and Dharmendra, Kumar (2013). Character association in wheat (*Triticum aestivum* L.). *Progressive Research* 8 (Special IV): 943-946.
- Hanson, W.D. (1963). Heritability. Statistical genetics and plant breeding NAS\_NRC, Washington, Publ., 1982: p. 125-140.
- Johnson, H.W., Robinson, H.F. and Comstock, R.E. (1955). Genotypic and phenotypic correlation in Soybean and their implication in selection. *Agron. J.* 47: 477-483.

- Kumar, Navin; Markar, Shailesh; Vijay, Kumar (2014). Studies on heritability and genetic advance estimates in timely sown bread wheat (*T. aestivum* L. em. Thell). *Bioscience Discovery*, 5(1): 64-69, Jan, 2014.
- Kumar, Ravindra et al. (2013). Genetic variability, heritability and genetic advance in bread wheat (*T. aestivum* L. em. Thell). *Environment and Ecology* 31(2): 405-410.
- Kumar, Satyendra; Gaur, S.C., Jaiswal, Ranjana and Mishra, Hariom (2016). Estimation of heritability and genetic advance of yield traits in wheat (*T. aestivum* L. em. Thell). National conference on science for rural India, 473-476.
- Mishra, Hariom; Gaur, S.C., Jaiswal, Ranjana and Kumar, Satyendra (2016). Analysis of variance, heritability and genetic advance for morphological traits in bread wheat (*T. aestivum* L. em. Thell). National conference on Science for rural India, 231-234.
- Sahu, R.K., Tarkeshwar, Yadav, M., Gaur, S.C., Dev, A., Yadav, G., Yadav, P. and Singh, S.P. (2019). Variability, heritability and genetic advance studies in some bread wheat (*T. aestivum* L. em. Thell). *Frontiers in Crop Improvement*, Vol. 7 (2): 135-137.
- Singh and Sharma (2011). Genetic variability, character association and path analysis of yield and its component character in durum wheat. *Progressive Agriculture*, 7(1/2): 15-18.
- Singh, A.K., Singh, S.B., Singh, A.P. and Sharma, A.K. (2012). Genetic variability character association and path analysis for seed and its components in wheat (*T. aestivum* L.

em. Thell) under rainfed environment. *Indian Journal of Agriculture Research* 46 (1): 48-53.

Tarkeshwar, Gaur, S.C., Singh, S.P. and Sahu, R.K. (2019). Studies on genetic variability, heritability and genetic advance for yield and yield attributing characters in bread wheat (*T. aestivum* L. em. Thell). *Frontiers*  *in Crop Improvement*, Vol. 7 (1): 15-18.

Tsegaye, D., Dessalegn, T. and G., Share (2012). Genetic variability, correlation and path analysis in durum wheat germplasm (*Triticum durum* Desf). *Agric. Res.* Rev. 1: 107-112.